

Cree® XLamp® XM-L LEDs

PRODUCT DESCRIPTION

The XLamp XM-L LED is the industry's highest performance, single-die white lighting-class LED. XLamp XM-L is 20% more efficient than XLamp XP-G at the same current, and can deliver 1000 lumens with 100 lumens per Watt efficacy. The XLamp XM-L LED offers Cree's industry-leading features: wide viewing angle, symmetrical package, unlimited floor life and electrically neutral thermal path.

XLamp XM-L LEDs can enable LED light into new applications that require tens of thousands of lumens, such as high bay and high-output area lighting. XM-L is also the ideal choice for lighting applications where high light output and maximum efficacy are required, such as LED light bulbs, outdoor lighting, portable lighting, indoor lighting and solar-powered lighting.

FEATURES

- Maximum drive current: 3000 mA
- Low thermal resistance: 2.5°C/W
- Maximum junction temperature: 150°C
- Viewing angle: 125°
- Available in warm, neutral and cool white
- ANSI-compatible chromaticity bins
- Unlimited floor life at
 ≤ 30°C/85% RH
- Reflow solderable -JEDEC J-STD-020C
- Electrically neutral thermal path

TABLE OF CONTENTS

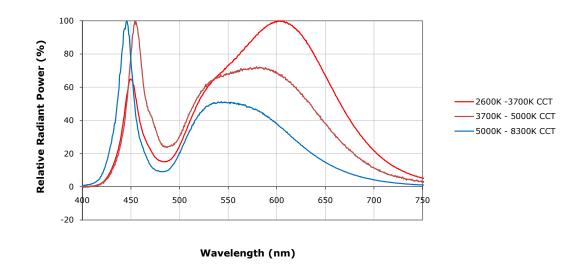
Flux Characteristics
Characteristics
Relative Spectral Power
Distribution
Relative Flux vs. Junction
Temperature
Electrical Characteristics
Thermal Design
Relative Flux vs. Current
Relative Chromaticity vs. Current
and Temperature (Cool White) !
Relative Chromaticity vs. Current
and Temperature (Warm White) 6
Typical Spatial Distribution
Reflow Soldering Characteristics 8
Notes9
Mechanical Dimensions10
Tape and Reel
Packaging10

FLUX CHARACTERISTICS (TJ = 25°C)

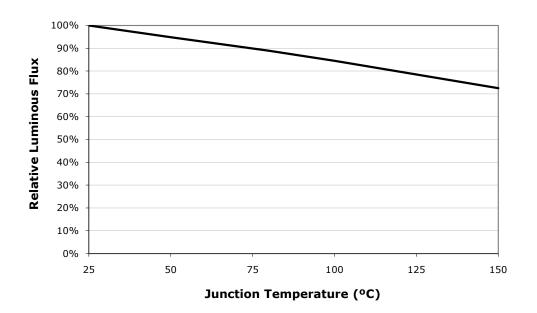
The following table provides several base order codes for XLamp XM-L LEDs. It is important to note that the base order codes listed here are a subset of the total available order codes for the product family. For more order codes, as well as a complete description of the order-code nomenclature, please consult the XLamp XM-L Binning and Labeling document.

Color	сст ғ			ler Codes ous Flux @ A (lm)	Order Code
	Min.	Max.	Group	Flux (lm)	
Cool White	E 000 K	0.200 K	T5	260	XMLAWT-00-0000-0000T5051
Cool Wille	5,000 K	5,000 K 8,300 K		280	XMLAWT-00-0000-0000T6051
Neutral White	2 700 K	5,000 K	T4	240	XMLAWT-00-0000-000LT40E4
Neutral Willte	ral White 3,700 K 5,000		T5	260	XMLAWT-00-0000-000LT50F4
Marina Milita	2 600 K	2 700 K	T2	200	XMLAWT-00-0000-000LT20E7
Warm White	2,600 K	3,700 K	T3	220	XMLAWT-00-0000-000LT30F7

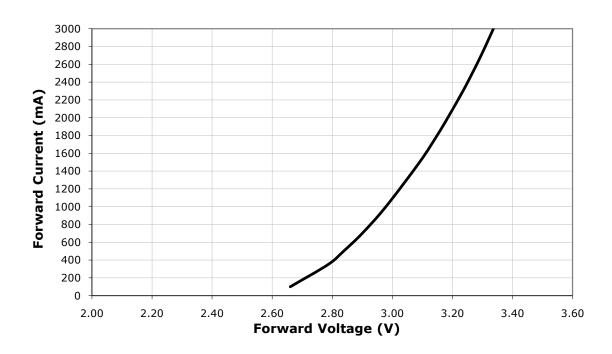
Notes:


- Cree maintains a tolerance of \pm 7% on flux and power measurements and \pm 2 on CRI measurements .
- Typical CRI for Cool White (5,000 K 8,300 K CCT) is 65.
- Typical CRI for Neutral White (3,700 K 5,000 K CCT) is 75.
- Typical CRI for Warm White (2,600 K 3,700 K CCT) is 80.

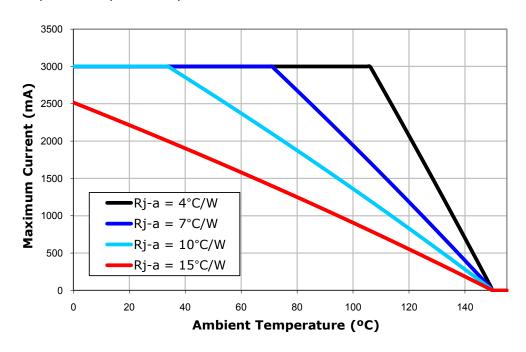
CHARACTERISTICS


Characteristics	Unit	Minimum	Typical	Maximum
Thermal Resistance, junction to solder point	°C/W		2.5	
Viewing Angle (FWHM)	degrees		125	
Temperature coefficient of voltage	mV/°C		-3.0	
ESD Classification (HBM per Mil-Std-883D)			Class 2	
DC Forward Current	mA			3000
Reverse Voltage	V			5
Forward voltage (@ 700 mA)	V		2.9	3.5
Forward voltage (@ 1500 mA)	V		3.1	
Forward voltage (@ 3000 mA)	V		3.35	
LED Junction Temperature	°C			150

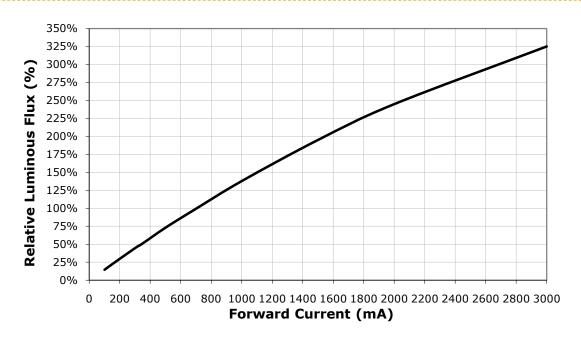
RELATIVE SPECTRAL POWER DISTRIBUTION



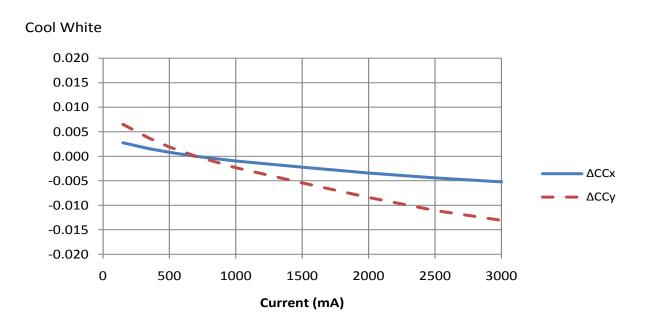
RELATIVE FLUX VS. JUNCTION TEMPERATURE ($I_F = 700 \text{ MA}$)



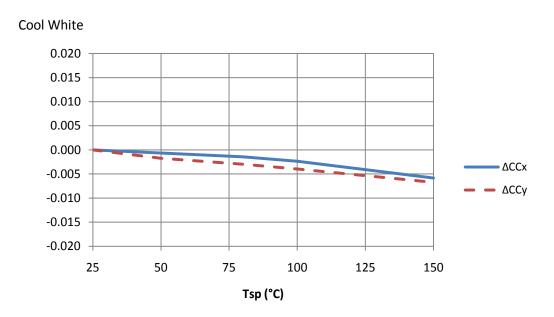
ELECTRICAL CHARACTERISTICS (T, = 25^{\circ}C)


THERMAL DESIGN

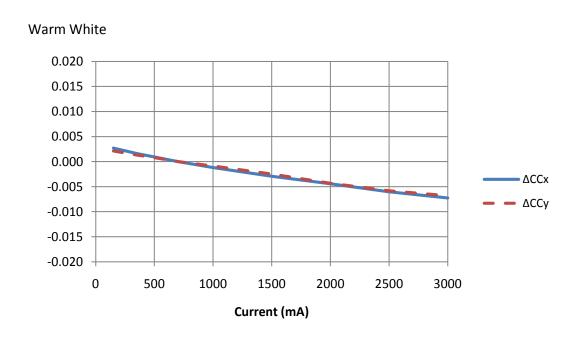
The maximum forward current is determined by the thermal resistance between the LED junction and ambient. It is crucial for the end product to be designed in a manner that minimizes the thermal resistance from the solder point to ambient in order to optimize lamp life and optical characteristics.



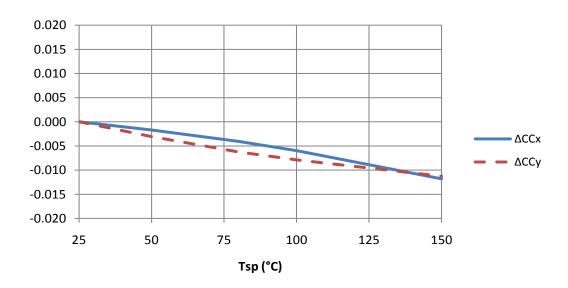
RELATIVE FLUX VS. CURRENT $(T_1 = 25^{\circ}C)$

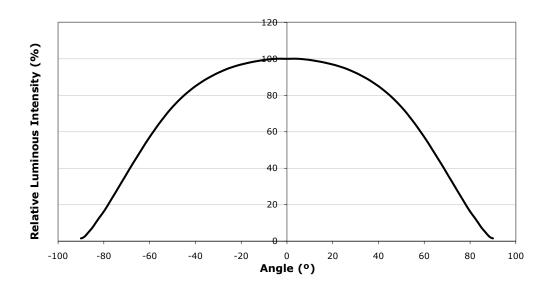


RELATIVE CHROMATICITY VERSUS CURRENT AND TEMPERATURE (COOL WHITE)



RELATIVE CHROMATICITY VERSUS CURRENT AND TEMPERATURE (COOL WHITE)

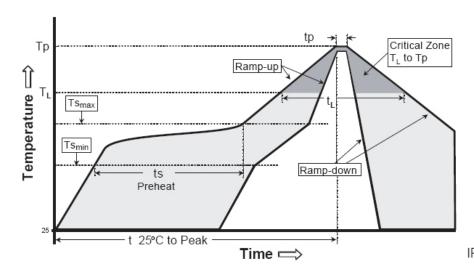

RELATIVE CHROMATICITY VERSUS CURRENT AND TEMPERATURE (WARM WHITE)



RELATIVE CHROMATICITY VERSUS CURRENT AND TEMPERATURE (WARM WHITE)

Warm White

TYPICAL SPATIAL DISTRIBUTION



REFLOW SOLDERING CHARACTERISTICS

In testing, Cree has found XLamp XM-L LEDs to be compatible with JEDEC J-STD-020C, using the parameters listed below. As a general guideline, Cree recommends that users follow the recommended soldering profile provided by the manufacturer of solder paste used.

Note that this general guideline may not apply to all PCB designs and configurations of reflow soldering equipment.

IPC/JEDEC J-STD-020C

Profile Feature	Lead-Based Solder	Lead-Free Solder	
Average Ramp-Up Rate (Ts _{max} to Tp)	3°C/second max.	3°C/second max.	
Preheat: Temperature Min (Ts _{min})	100°C	150°C	
Preheat: Temperature Max (Ts _{max})	150°C	200°C	
Preheat: Time (ts _{min} to ts _{max})	60-120 seconds	60-180 seconds	
Time Maintained Above: Temperature (T_L)	183°C	217°C	
Time Maintained Above: Time (t _L)	60-150 seconds	60-150 seconds	
Peak/Classification Temperature (Tp)	215°C	260°C	
Time Within 5°C of Actual Peak Temperature (tp)	10-30 seconds	20-40 seconds	
Ramp-Down Rate	6°C/second max.	6°C/second max	
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.	

Note: All temperatures refer to the topside of the package, measured on the package body surface.

NOTES

Lumen Maintenance Projections

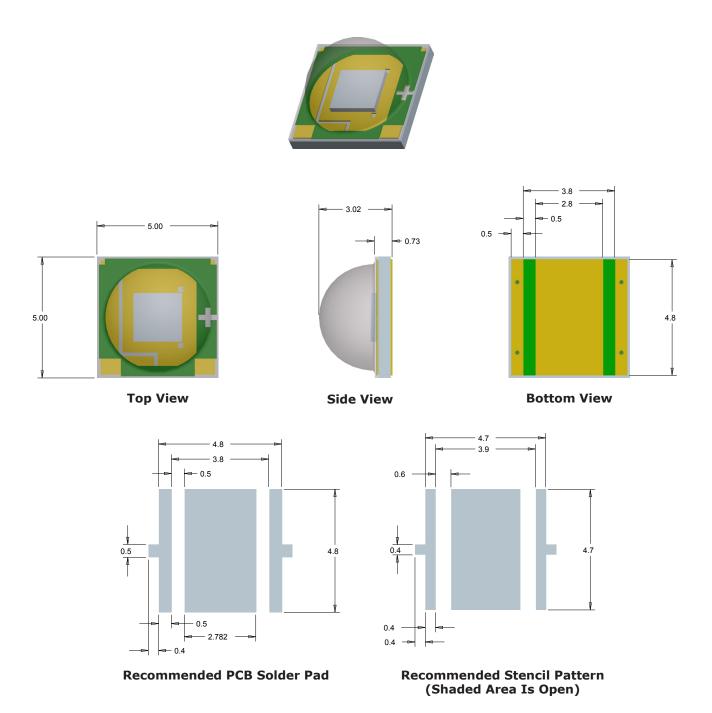
Cree currently recommends a maximum drive current of 1500 mA for XLamp XM-L white in designs seeking the ENERGY STAR* 35,000 hour lifetime rating (\geq 94.1% luminous flux @ 6000 hours) or 25,000-hour lifetime rating (\geq 91.8% luminous flux @ 6000 hours).

Please read the XLamp Long-Term Lumen Maintenance application note for more details on Cree's lumen maintenance testing and forecasting. Please read the XLamp Thermal Management application note for details on how thermal design, ambient temperature, and drive current affect the LED junction temperature.

* These lifetime ratings are based on the current ENERGY STAR Solid State Lighting Luminaires V1.1 (December 12, 2008) and ENERGY STAR Integral LED Lamps V1.0 (December 3, 2009) lumen maintenance criteria.

Moisture Sensitivity

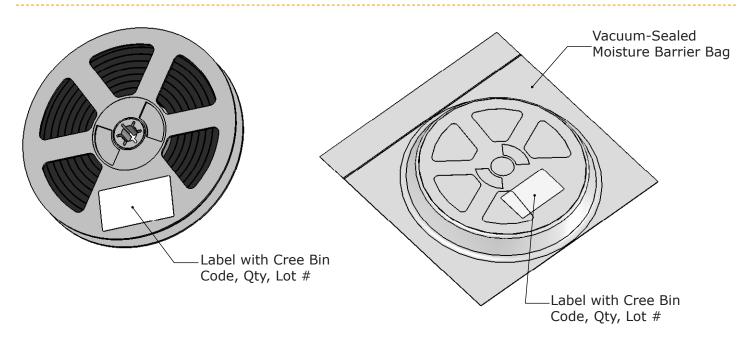
In testing, Cree has found XLamp XM-L LEDs to have unlimited floor life in conditions ≤30°C / 85% relative humidity (RH). Moisture testing included a 168 hour soak at 85°C / 85% RH followed by 3 reflow cycles, with visual and electrical inspections at each stage.

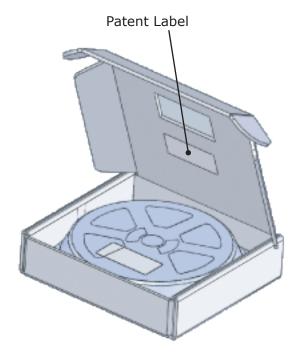

Vision Advisory Claim

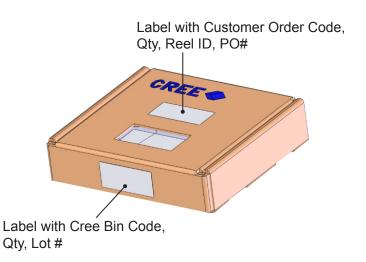
WARNING: Do not look at exposed lamp in operation. Eye injury can result. See LED Eye Safety at http://www.cree.com/products/pdf/XLamp_EyeSafety.pdf.

MECHANICAL DIMENSIONS

All measurements are $\pm .13$ mm unless otherwise indicated.




TAPE AND REEL


All dimensions in mm. Ø Do1.50 +.10 .0591 +.0039 -.0000 [] 2.00[.079] 4.00[.157] Po 5.40[.213] Bo 5.50[.217]F 10.25 [.404] E2 12.30 [.484] MAX Ø 1.50[.059] D1 ⇒ .36[.014] 8.00[.315] 7.0° 5.40[.213] Ao User Feed Direction 3.35 1.75 END CATHODE SIDE START 0 ANODE SIDE Trailer 160mm (min) of empty pockets sealed with tape Loaded Pockets (1000 Lamps) Leader 400mm (min.) of empty pockets with at least 100mm sealed by tape (40 empty pockets min.) (15 pockets min.) +.2 .0 MEASURED AT HUB ◁ 330 +.25 -.75 16.4 +0.2 .0 MEASURED AT HUB 1.9±.4 Ø21±.4 Ø13.1 ±.2 12.4 +1.0 -.5 MEASURED AT EDGE 60° 60°

PACKAGING

